
U
n
co

rr
e
ct

e
d

P
ro

o
f

ARTICLE

Optimal selection strategies for QTL mapping using
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The cost of large-scale association studies may be reduced substantially by analysis of pooled DNA from
multiple individuals. Here we examine the optimal symmetric and asymmetric designs for pooling
experiments for quantitative traits under a range of assumptions about the underlying genetic model and the
sources of experimental errors in allele frequency estimation. The results indicate that, in the absence of
experimental errors and for common alleles with additive effects, a symmetric pooling scheme comparing the
top 27% with the bottom 27% of the trait distribution is optimal, extracting 80% the total information
available. A symmetric design is not optimal for rare or recessive alleles, which require asymmetric (or other)
pooling strategies. Allele frequency measurement errors reduce the optimal pooling fraction as well as the
overall efficiency of the pooling design. In contrast, random variation in the amount of DNA contributed by
individuals to a pool reduces only the overall efficiency of the pooling design. Our results emphasize the
importance of minimising experimental errors and suggest a pooling fraction of around 20%.
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Introduction
The limited power of linkage to detect and localize genes of

minor or modest effect has led to the widely accepted view

that association is the primary tool of gene mapping in

humans.1 Unlike linkage, which extends over long genetic

distances, allelic associations to a disease are usually

restricted to the susceptibility locus itself and very tightly-

linked polymorphisms.2 Consequently, the screening of even

a megabase of DNA may require 50 ± 100 markers. Although

single nucleotide polymorphisms (SNPs) occur at sufficient

density in the genome,3 the need to genotype hundreds of

individuals for thousands of markers remains prohibitively

expensive. One way of considerably reducing cost is to use

DNA pooling, whereby DNA samples from multiple indivi-

duals are pooled before genotyping. This technique is ideal

for screening a large number of markers for associations,

although positive results will require confirmation using

individual genotype data.4 ± 10

For a categorically defined disease, DNA pooling is

necessarily restricted to a simple case-control design, in

which allele frequencies are compared across a pool of DNA

from cases and a pool of DNA from controls. The appropriate

method of analysis and the power of this simple design have

been examined.11 A greater variety of pooling designs is

possible for quantitative traits. Bader et al.12 considered

symmetric designs under a classical biometrical genetic

model and showed that the optimal pooling strategy is to

define pools by the top 27% and the bottom 27% of the trait

distribution. However, they did not consider asymmetric

designs or more importantly the impact of different sources

of experimental errors.
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Technical aspects of DNA pooling dictate that errors in

allele frequency estimation will arise. For example, DNA

quantification, choice of electrophoresis method, `plus-A'

stutter, and sensitivity (the minimum reliable detectable

difference between pools) are all factors that contribute to

discrepancies in allele frequency estimation. This error can be

reduced to55%,13,14 and in the absence of experimental bias

maybe to as little as 1%.

We have examined the sensitivity of optimal pooling

designs for quantitative traits to variations in genetic model

parameters and to experimental noise. After confirming the

result of Bader et al.12 that a symmetric pooling design with a

pooling fraction of 27% in each tail is optimal for a common

additive gene, we show the potentially serious loss of power

of this design for rare or recessive alleles. We also consider

two sources of experimental noise and show that a high level

of experimental accuracy is essential for the success of the

pooling strategy, and that the impact of experimental noise

on optimal design is to lower to pooling fraction. Finally, we

provide practical guidelines for optimal sample selection in

DNA pooling studies.

Method and results
Genetic model

We assume a diallelic quantitative trait locus (QTL) with

alleles A1 and A2, occurring at frequencies p and q,

respectively. We denote the mean trait effects of the

genotypes A1A1, A1A2, and A2A2 by a, d, and 7a, and their

frequencies by P(G)=p2, 2pq, and q2, respectively. The mean

effect in the population is therefore m=a(p7q)+2dpq. The

dominance ratio (d/a) is denoted as c, while the proportion of

trait variance accounted for by the QTL is represented by sQ
2.

Under Hardy-Weinberg equilibrium, sQ
2=2pq[a-d(p-

q)]2+[2pqd]2=sA
2+sD

2. The distribution of trait scores (X) for

each genotype, G, is assumed to be normal with mean mG

equal to a7m, d7m, and 7a7m for genotypes A1A1, A1A2,

and A2A2, respectively, and variance sR
2=17sQ

2 within each

genotype. The trait distribution in the population is thus a

mixture of three normal distributions with overall mean 0

and variance 1.

Test statistic

We assume that trait values are available for all individuals in

a random sample of the population. To test the null

hypothesis of no linkage disequilibrium between marker

locus and QTL we compare the allele frequencies of A1 in the

lower and upper pools. The test statistic for a two-pool design

is

Z2 � �p̂U ÿ P̂L�2
s2

;

where p̂L and p̂U are the estimated frequencies of allele A1 in

the lower and upper pools respectively. The variance of

p̂U ÿ p̂L is s2 = VS + VU + VM, where VS represents sampling

variation, VU represents variation in the quantity of DNA

contributed by the individuals, and VM represents variation

in the measurement of allele frequency. The sampling

variance is

VS � p̂�1ÿ p̂� 1

2nL
� 1

2nU

8>: 9>;; where

p̂ � nLp̂L � nUp̂U

nL � nU

and nL and nU are the numbers of individuals in the lower and

upper pools, respectively.

The accuracy of allele frequency estimation using

pooled DNA depends on each individual making an equal

contribution of DNA to the pool. However, the process of

obtaining equal concentrations of DNA for the individual

samples, and then pipetting out equal volumes of the

solutions to make up the pool, is subject to experimental

error. The variance due to unequal DNA contributions is

shown in Appendix A to be

VU � p̂�1ÿ p̂�t2 1

2nL
� 1

2nU

8>: 9>;
where t is the coefficient of variation (i.e. standard deviation

over mean) of the number of DNA molecules of locus A

contributed by each individual.

The frequency of an allele in a pool of DNA is a quantitative

measure that is also subject to measurement error. We assume

that the effect of measurement error is to increase the

variance of the allele frequency estimate of each pool by a

constant quantity, denoted e2. Thus the contribution of

measurement error to the variance in allele frequency

difference between the two independent pools is therefore

simply VM=2e2.

Under the null hypothesis, Z2 has a w2 distribution with

one degree of freedom. To compare the efficiencies of

different designs, we evaluate the non-centrality parameter

(NCP) of Z2 in the presence of a QTL.

From a random sample of N individuals from the

population, individuals with trait values below a threshold

TL are selected for the low pool, while those with trait values

above another threshold TU are selected for the high pool.

The expected numbers of individuals in the upper and lower

pools are given, respectively, by

E�nU � � N
X

G

1ÿ F Tu ÿ mG

sr

8>: 9>;� �
P�G�

E�nL� � N
X

G

F
TL ÿ mG

sR

8>: 9>;� �
P�G�

where F is the standard normal distribution function. The

expected allele frequencies in the two pools are then

E�pU � �
N 1ÿ F TUÿmA1A1

sR

8: 9;h i
P�A1A1� � 1

2 1ÿ F TUÿmA1A2

sR

8: 9;h i
P�A1A2�

h i
E�nU �
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and

E�pL��
N F

TL ÿ mA1A1

sR

8>: 9>;P�A1A1� � 1

2
F

TL ÿ mA1A2

sR

8>: 9>;P�A1A2�
� �

E�nL�

The NCP of the test statistic is then

NCP � �E�pU � ÿ E�pL��2
VS � VU � VM

:

Optimal asymmetric and symmetric designs

For any set of model parameters, this NCP can be

maximised over the thresholds TL and TU, and therefore

the pool sizes nL and nU. Because there are only two

variables, the optimisation can be therefore achieved

simply by a grid search. Thus, if the true genetic model

is known, the optimum selection strategy is to select

individuals for the upper and lower pools using the

thresholds calculated under the asymmetric pooling

scheme for the particular model. In addition, we also

maximised this NCP subject to the constraint that nL=nU.

These symmetric designs are particularly relevant when

there is no knowledge regarding allele frequency or

dominance, so that there is no reason to treat the two

tails differently.

We calculated the NCP for the optimal asymmetric and

symmetric designs for a test of sA40 under 8 different sets of

model parameters, encompassing different levels of QTL

heritability, allele frequency and dominance, assuming the

absence of experimental errors (Table 1). As expected, with

equal allele frequency (P=0.5) and no dominance (c=0), the

optimal design is symmetric.12,15 The optimal design is

asymmetric when allele frequencies are not equal or when

there is dominance, and the degree of asymmetry and the

ratio of the NCP for asymmetric and symmetric designs both

depend strongly on the magnitude of a/sR (R2=0.98 for

regression of the natural log of the NCP ratio on a/sR, P-value

=4610719). When s/sR50.5, the symmetric and asymmetric

designs provide equal information. As a/sRincreases, the QTL

has a major gene effect and a multimodal phenotypic

distribution arises. The asymmetric design essentially selects

the individuals who become separated from the main

phenotypic distribution.

Although asymmetric pooling is potentially more infor-

mative than symmetric pooling, our usual lack of knowledge

on allele frequency and dominance means that we would

normally adopt a symmetric design. A symmetric design

would also be appropriate for a more general test of sQ
2=0.

Figure 1 shows the expected percentage of total informa-

tion (obtained by individual genotyping) retained by

symmetric designs with different pooling fractions, for the

eight models. Here, the NCP for individual genotyping is

simply the QTL heritability, sQ.2,12,16 The optimal pooling

fraction is about 27% for all models with the exception of rare

Table 1 Optimum thresholds, pool sizes, and frequency of allele A1 in pools, for individual models over range of heritabilities,
under Symmetric and Aymmetric Pooling schemes, sample size N=1000.

Optimal Symmetric Pooling Optimal Asymmetric Pooling
Model h2

(%) p c nL nU (%) PL (%) PU NCP nL (%) nU (%) PL (%) PU NCP

1 10 0.1 71 2 2 9.1 44.1 11.3 93 1 9.1 83.0 98.2
2 0 32 32 3.7 18.3 69.3 45 10 4.6 26.4 99.3
3 1 32 32 3.7 18.2 69.1 45 12 4.5 24.4 92.4
4 0.25 71 15 15 20.3 39.6 26.5 59 7 21.1 48.5 48.6
5 0 28 28 14.2 37.6 79.7 36 19 15.5 40.3 85.5
6 1 28 28 14.3 36.3 71.7 33 25 15.2 37.1 73.3
7 0.5 0 28 28 36.4 63.6 82.6 28 28 36.3 63.6 82.7
8 1 28 28 37.7 59.8 54.8 21 38 35.5 58.7 58.2
1 5 0.1 71 3 3 9.1 28.0 6.6 79 1 9.2 54.5 32.9
2 0 28 28 5.1 16.3 37.2 41 14 5.8 19.4 45.0
3 1 28 28 5.1 16.1 36.3 40 15 5.8 18.6 42.2
4 0.25 71 22 22 21.1 32.3 14.3 49 10 21.8 36.6 20.0
5 0 28 28 17.2 33.7 40.2 34 21 17.8 35.0 41.6
6 1 28 28 17.4 32.8 35.3 31 25 17.8 33.4 35.7
7 0.5 0 27 27 40.3 59.7 40.9 27 28 40.4 59.7 40.9
8 1 27 27 41.4 57.3 27.2 22 35 40.3 57.0 28.1
1 1 0.1 71 15 15 9.2 12.0 1.3 50 7 9.4 13.2 2.0
2 0 27 27 7.6 12.7 8.0 33 21 7.8 13.2 8.3
3 1 27 27 7.6 12.7 7.6 33 21 7.8 13.0 7.8
4 0.25 71 27 27 22.9 27.6 3.1 36 19 23.1 28.3 3.4
5 0 27 27 21.3 28.8 8.1 30 25 21.5 29.0 8.2
6 1 27 27 21.5 28.5 7.0 29 26 21.7 28.6 7.0
7 0.5 0 27 27 45.7 54.3 8.1 27 27 45.8 54.2 8.1
8 1 27 27 46.3 53.4 5.4 25 30 46.2 53.2 5.4

nL = sample size of individuals in lower pool (%), nU = sample size of individuals in upper pool (%). p = frequency of allele A1, PL = frequency of
allele in A1 in lower pool, PU = frequency of allele A1 in upper pool.
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or recessive alleles; the information retained approaches 80%

for common additive alleles but is particularly poor for rare

recessive alleles.

Experimental error

Next, we investigated the impact of experimental error,

focusing only on symmetric pooling designs, employing an

equal allele frequency, additive model with 1% QTL

heritability. The impact of increasing level of measurement

error is to reduce the information retained and to decrease

the optimal pooling fraction (Figure 2). Random variation in

the amount of DNA contributed by individual subjects

reduces the information retained, but does not affect the

optimal pooling fraction (Figure 3). In absolute terms, even

relatively small values of e (40.01) or t (40.2) can have a

large impact on the information retained by pooling.

For small and additive QTL effects, the NCP in the presence

of experimental noise is shown in Appendix B to be

NCP � 2N
s2

A

1� t2

8>>: 9>>; �f�Fÿ1�f ���2
f � f 2k2

8>>>: 9>>>;;
where the term k2 represents the ratio of the measurement

error to other sources of error,

k2 � e2

�pq=2N��1� t2� :

In the absence of experimental noise this reduces to the

formula derived by Bader et al.12, which implies an optimal

pooling fraction of 27%. It can be seen from these formulas

that the optimal fraction remains at 27% regardless of twhen

e is zero, but having e40 reduces the optimal pooling

fraction. The reason for this difference is that increasing the

pool size does not reduce measurement error. Analytical

estimates for the optimal pooling fraction, derived in

Appendix C, are

f � F�ÿ0:61ÿ 0:26k2�; k51;
F�ÿ�0:82ÿ 0:25lnk2�; k41:

�

These analytical estimates are shown in Figure 4 to be quite

accurate when compared to the numerical results.

Discussion
We have illustrated that in the absence of experimental

error a symmetric pooling sampling scheme, whereby the

top and bottom 27% are separately pooled and genotyped,

results in a pooling association study that is optimally

powerful across a wide range of possible genetic models

underlying the trait. The information retained relative to

individual genotyping approaches 80% for common

additive alleles but is particularly poor for rare recessive

alleles.

Our results on the impact of experimental error

emphasize the importance of accuracy in both the

constitution of the pools and the measurement of allele

Figure 1 Symmetric pooling scheme compared with individual genotyping for h2=0.01. Proportion of information is the ratio of the test
statistic under symmetric pooling scheme to the test statistic under individual genotyping.
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Figure 3 Effect of error due to unequal DNA contribution from individuals on symmetric pooling scheme, assuming various values for
the coefficient of variation (t) of the number of DNA molecules of locus A, P=0.5, h2=.01, c=0.

Figure 2 Effect of error from measurement on symmetric pooling scheme assuming various values for standard error of allele frequency
measurement error (e), P=0.5, h2=0.01, c=0, N=1000.
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frequencies. We have shown that random variation in the

amount of DNA contributed by individuals to a pool

reduces the efficiency of the pooling scheme and that

allele frequency measurement errors reduce the optimal

pooling fraction as well as the overall efficiency of the

scheme. Thus, providing errors from allele frequency

estimation can be minimised to within 1% in standard

deviation, we recommend symmetric pooling fractions of

around 20% as opposed to the 27% that would be optimal

in the absence of experimental errors. It may be preferable

to replicate the pooling to reduce the DNA concentration

variance or, more importantly, to repeat the allele

frequency measurement to reduce the effective experi-

mental measurement error.

In our calculations we have assumed that the true values of

e and t are known, so that they can be specified correctly in

the calculation of the test statistic. Clearly, under-specifica-

tion of e and t will lead to liberal P values, whereas over-

specification of e and t will lead to a conservative test. In

practice, values of e and t may be estimated from laboratory

experiments prior to the actual association study, or inferred

from the distribution of values of the test statistics, in a way

similar to the use of genomic control for population

stratification.17 ± 20

While the results we have obtained suppose a single-locus

test, biological systems may exhibit multi-locus epistatic

effects or gene-environment interactions. The primary effect

in the context of the single-locus pooled tests described here

is to re-scale the additive variance. For example, suppose that

a fraction s of the population is exposed to a sensitising factor

that enhances the genotypic effects by a factor l, from a, d,

and 7a to la, ld, and 7la for the genotypes A1A1, A1A2, and

A2A2 respectively, and additionally that the sensitising factor

is correlated with allele A1 with correlation constant r. The re-

scaled value of sA, the correlation between the fraction of

allele A1 in a genotype and the phenotypic shift, is

�1� �lÿ 1�s�sA � r
�����������������
s�1ÿ s�p �lÿ 1��pÿ q�2d. This analysis

supposes that the sensitising factor has no independent

effect, which is appropriate if phenotypic variables have been

conditioned on the applicable covariates. Although interac-

tion terms do not interfere with single-locus pooled tests,

estimating the size of the interaction terms would require

individual genotyping.

Finally, family-based tests provide additional means to

control for environmental effects, and the optimised tests for

unrelated populations described here may be extended to

family-based studies (JS Bader and P Sham, personal

communication).

Figure 4 Optimal pooling fraction for a symmetric scheme assuming various values for standard error of allele frequency measurement
error (e), P=0.5, h2=0.01, c=0, N=1000, from numerical calculations (solid line) and analytical approximations (dashed line).
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Appendix A: Variance due to unequal contribution
of DNA samples
Restricting the terminology to this appendix, let Xi

represent the total number of alleles contributed by

individual i in a pool made up of n individuals, with

Xi*N(m,t2m2). Let Yi represent the number of A1 alleles

contributed by individual i. For genotype A1A1 with

population frequency p2, Yi=Xi; for A1A2 with frequency

p1, Yi*Bin(Xi,1/2); and for A2A2 with frequency p0, Yi=0.

The population frequency of allele A1 is p=p1/2+p2, and the

frequency of allele A1 in the pool is

p* �
P

YiP
Xi
; with

Var�p*� � 1

n
� E�Yi�2
E�Xi�2

� Var�Yi�
E�Yi�2

� Var�Xi�
E�Xi�2

ÿ 2Cov�Yi�
E�Yi�E�Xi�

8>>>: 9>>>;
being the approximate variance for a quotient of correlated

random variables.21 The required terms are

E�Yi� � p1E
Xi

2

8>: 9>;� p2E�Xi� � pm

E�Y2
i ��p1E

X2
i

4
� Xi

4

8>>: 9>>;� p2E�X2
i ��

p1

4
� p2

8: 9;�1� t2�m2 � p1

4
m

Cov�YiXi� � p1E
X2

i

2

8>>: 9>>;� p2E�X2
i � ÿ pm2 � pt2m2; yielding

Var�p*� � 1

n

p1

4
� p2 ÿ p2

8: 9;�1� t2� � p1

4m

� �
after simplification. Assuming Hardy-Weinberg equilibrium

and large m, this reduces to

Var�p*� � p�1ÿ p�
2n

�1� t2:

Appendix B: Optimal symmetric design in the
presence of experimental error
Let G be the proportion of A1 alleles in a genotype, so that

G = 0, 1/2 or 1, and Var(G) = pq/2. According to an additive

genetic model, the expected value of the trait X given G is

E�XjG� � ÿ�a� a�pÿ q�� � 2aG. Using the implied covar-

iance, Cov(X,G)=pqa, and a linear approximation, the
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expected value of G given X is E�GjX� � p� pqaX. In the

lower pool, E(X)&7f(F71(f))/f, where f is the standard

normal density function, F71 is the inverse standard normal

distribution function, and f is the lower pooling fraction.22

The expected values of G is in the lower pool and, by

symmetry, the upper pool are therefore

E�pL� � pÿ pqaf�Fÿ1�f ��
f

E�pU� � p� pqaf�Fÿ1�f ��
f

;with

Var�pU ÿ pL� � VS � VU � VM � pq

Nf
�1� t2� � 2e2

from before. The NCP is therefore

NCP �
2pqaf�Fÿ1�f ��

f

8>>: 9>>;2

pq

Nf
�1� t2� � 2e2

� 4Npqa2�f�Fÿ1�f ���2

f �1� t2� � 2Nf 2e2

pq

� 2Ns2
A

�f�Fÿ1�f ���2

f �1� t2� � 2Nf 2e2

pq

8>>>>>>>>>>>:
9>>>>>>>>>>>;:

Appendix C: Analytical approximation for the
optimal symmetric design in the presence of
experimental error
The design is optimised by maximising the value of the NCP,

which is equivalent to maximising the value of y2/(f+f2k2),

where y =f(z) and f =F(z) for normal deviate z. Taking the

derivative with respect to z and multiplying by non-zero

terms yields

y � 2zf � 2f k2�y � zf � � 0

as the equation specifying the minimum. When k= 0, the

solution to this equation occurs at z0 =70.61, with f0 = 0.27

and y0 = 0.33 (Bader et al.12). For small k, we write z = z0 + d. To

lowest order in d, the above equation is

�z0y0 � 2f0�dÿ 2z0f0k2 � 0;yielding

d � z0f0k2=�1ÿ z2
0� and

f � F�z0 � z0f0k2=�1ÿ z2
0�� � F�ÿ0:61ÿ 0:26k2�:

When k is large, we use the asymptotic expansion f =

7(y/z) + (y/z3), and the equation specifying the optimum

reduces to72yk2/z3 = 1. Taking the natural logarithm of both

sides and equating exponents,

z2=2ÿ 3ln�ÿz� � ln�2p� � ln��2=p�1=2k2� � 0:

Writing x =7 + d yields d= (1/8)7(1/4)ln[(2/p)1/2k2] to lowest

order in d. The result of this perturbation theory expansion

for large k is

f � F�ÿ0:82ÿ �1=4�ln�k2��:

An appropriate crossover between the small-k formula and

the large-k formula is k= 1.

????
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