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Identifying the polymorphisms that contribute to disease predisposition
and drug response is a major goal of the post-genome era. Single nucleotide
polymorphisms (SNPs) in disease-related genes are often used as
candidates in the search for causative variations. Association tests based on
haplotypes have also been suggested and, at times, have provided greater
statistical power than tests based on the underlying SNPs. Here we review
the statistical model traditionally used to describe association studies for
complex traits and derive novel results for the relative power of SNP-based
and haplotype-based tests of association. In the model, a set of
independent SNP-based variations, some of which contribute to a
measured phenotype, may be used as markers directly or may be organised
into haplotype markers. Provided that the marker set includes all the
causative SNPs, we find a simple rule for the relative power of SNP and
haplotype markers: SNP-based tests have greater power when the number
of causative SNPs (a subset of the total set of SNPs) is smaller than the total
number of haplotypes. Furthermore, we find that regression tests for the
simple main effect of each haplotype are generally more powerful than
ANOVA tests applied to haplotype pairs. A review of recent literature
supports our findings.
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1. Introduction

Identifying the genetic components of complex traits is one of the primary
goals of the human genome project. Cancer, metabolic disorders, such as
diabetes and obesity, cardiovascular disorders, such as hypertension and
stroke, and psychiatric disorders typify these traits caused by multiple
genetic and environmental factors. Often, the pharmacogenetics of drug
response is also under the control of multiple genetic factors. A better
understanding of complex traits would permit stratification of patient
populations presenting a single disease phenotype into sub-classes whose
disorders might have differing genetic components or different responses
to particular therapeutics.

Studies identifying the underlying genetic variations that cause increased
disease risk or affect drug response have depended on the availability
markers spaced throughout the genome. Early physical maps of the human
genome with markers spaced 106 - 108 nucleotides (nt) required family-
based studies and linkage analysis to identify disease-related loci [1].
Although these types of studies have identified causative mutations for
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monogenic disorders, they have not been as
successful in identifying genetic components for
complex, polygenic traits, which by definition lack the
Mendelian inheritance patterns, strong penetrance
and allelic homogeneity required for linkage
methods.

More recently, SNPs have been suggested as an
alternative marker set. These single nucleotide substi-
tutions or deletions are typically biallelic variants and
occur at sufficient density to permit whole-genome
association studies in outbred populations [2]. Linkage
disequilibrium (LD) is anticipated to extend 5000 -
100,000 nt [3-5], varying irregularly across the genome
and implying that hundreds of thousands of
individual SNPs will be required for a whole-genome
scan. In order to correct for multiple hypothesis
testing, a significance level of 10-8 - 10-9 has been
suggested, which implies a sample size of several
thousand individuals is required for adequate power
to detect association [6-8]. Although the cost of
genotyping can be reduced by testing allele frequency
differences between pools of DNA collected from
individuals with extreme phenotypes [9,10], these
tests are necessarily less powerful than individual
genotyping and require even larger population sizes.

While population sizes sufficiently large for
full-genome scans may be obtained for unselected
populations to study genetic risk factors for disease
predisposition [11,12] and for specific diseases [13],
these numbers are substantially larger than the
enrolment of typical Phase I, Phase II and even Phase
III trials. A reasonable strategy to reduce the sample
sizes required for pharmacogenomic studies is to
restrict attention to polymorphisms residing in a small
set of candidate genes representing, perhaps, known
drug targets and other genes in disease and drug
response pathways. By sequencing a gene in 100
individuals and thereby scanning 200 chromosomes,
one has 95% probability of identifying any genetic
polymorphism with an allele frequency above 1.5%.
These polymorphisms, usually SNPs, should include
most of those that reside in the candidate region,
affect the phenotype and have population-level
significance. The SNP-based markers may also be
used directly for association tests. Haplotypes or
diploid haplotype pairs, constructed from the
individual genotypes, constitute an alternative set of
markers for an association test.

Haplotype-based tests have been suggested for use in
clinical studies [14]. Nevertheless, haplotype-based

tests require additional expense relative to SNP-based
tests, including direct sequencing or computational
inference to identify haplotypes, and for now
preclude less costly tests of pooled DNA. With the
interest in haplotype-based tests growing, experimen-
talists weighing the relative merits of SNP-based and
haplotype-based tests or choosing between tests
based on haplotypes or haplotype pairs may benefit
from theoretical guidance based on realistic genetic
models.

Here we analyse the relative power of association
tests based on SNPs and haplotypes. Our focus is on
quantitative traits characteristic of disease risk or
clinical response and our goal is to provide simple,
analytical estimates of the relative efficiency of
SNP-based and haplotype-based tests. In Section 2,
we provide a statistical model for a quantitative
phenotype and review the power of SNP-based tests
to detect association. We extend this analysis to
haplotype-based regression tests and haplotype-pair
analysis of variance (ANOVA) tests. The expected
p-values and the sample sizes required to detect
association are presented for each type of test. In
Section 3, we review literature reports applying both
SNP-based and haplotype-based tests to experimental
and simulated data. We conclude in Section 4 with a
summary and our recommendations.

2. Statistical model

The salient assumptions underlying the statistical
model developed here are as follows:

• Every causative polymorphism in the candidate
genetic region is a SNP (biallelic for notational
simplicity). The SNP marker set includes each
causative SNP as well as many other neutral
polymorphisms.

• The causative SNPs make additive contributions to
a quantitative phenotype; epistasis is negligible.

• The phenotypic variability due to any particular
SNP is small relative to the overall phenotypic
variability from residual genetic factors, including
other markers in the set and environmental factors;
selective pressure on SNPs or haplotypes is
negligible.

This model describes any degree of LD by adjusting
the total number of haplotypes. The extremes are
complete disequilibrium, with two haplotypes, and
complete equilibrium, with 2T haplotypes, where T is
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the total number of SNP markers. According to the
third assumption, however, disequilibrium at the
marker loci is not under phenotypic selection. This
implies that pairs of alleles of different SNPs that shift
the phenotypic value in the same direction are as
likely to be found in the same haplotype as pairs of
alleles that shift the phenotypic value in opposite
directions.

Based on these assumptions, we derive an analytical
expression for the relative power of SNP-based and
haplotype-based tests. In Section 4, we discuss the
limitations of these assumptions and indicate how
generalising these assumptions would modify our
results.

2.1 SNP-based phenotype model

A variance components model is used to describe the
dependence of an individual’s phenotype on its
genotype [15]. This quantitative model may also be
applied to a haplotype relative risk model for disease
susceptibility in which the risks from haplotypes are
multiplicative and each risk factor is proportional to
an exponential of an underlying quantitative trait [16].

In the variance components model, the quantitative
phenotype denoted X is standardised to have zero
mean and unit variance. Several quantitative trait loci,
here modelled as biallelic markers or SNPs, are
assumed to contribute to the phenotypic value.
Individual SNPs may occur within the same gene and
the total number of SNPs is T. A subset G of the total
number are causative, defined as contributing an
allele-specific shift to the phenotypic value. The
alleles for a particular SNP γ, γ = 1 to T, are labelled Aγ1
and Aγ2, with respective frequencies pγ and 1 - pγ1 in
an unselected population. Hardy-Weinberg equilib-
rium is assumed separately for each SNP (which does
not preclude LD between SNPs) and the probabilities
of the genotypes Aγ1Aγ1, Aγ1Aγ2 and Aγ2Aγ2 are
therefore pγ

2, 2pγ(1 - pγ) and (1 - pγ)
2. The frequency of

allele Aγ1 for each individual is either 1, 0.5 or 0 and is
denoted fγ. The variance of fγ is σ

γf
2 , with

σ
γ γ γ γ γ γ

γ γ

f p p p p p

p p

2 2 2 2

1 1 4 2 1 0 1

1

= × + × − + × − −

= −

( / ) ( ) ( )

( ) / 2.

The effect of allele Aγ1 is assumed to be purely
additive, a shift of aγ/2 for each copy inherited. The
shifts in phenotypic value are therefore aγ - µγ for the
Aγ1Aγ1 homozygote, -µγ for the heterozygote and

-aγ-µγ for the Aγ2Aγ2 homozygote, where the constant
µγ = aγ(2pγ - 1) ensures that X has zero mean. This SNP
contributes a phenotypic variance of σ γ

2 ,

σ γ γ γ γ
2 2

2 1= −p p a( )

to the total phenotypic variance of 1. For a polygenic
trait, the variance σγ

2 contributed by any individual
SNP is small compared to the residual variance
σ σ γR

2 21 1= − ≈ from other genetic and environ-
mental factors. The expected value of σ γ

2 for a
causative SNP is defined as σG

2 ,

σ σ γ
γ

G

G

G
2 1 2

1

= −

=
∑ ,

the mean of the individual variances. The fractional
variance explained by all the SNPs together is G Gσ 2 .
This total may be much smaller than 1 if environ-
mental factors and genetic factors outside the
candidate region are important; it approaches the
genetic heritability when the entire genome is
considered.

Note that if the effect of a particular SNP is not purely
additive, an additive effect can nevertheless be
constructed by defining aγ as half the difference in
phenotypic shift between Aγ1 and Aγ2 homozygotes
minus (2pγ - 1)dγ, where dγ is the difference between
the phenotype shift for heterozygotes and the
midpoint of the shifts for homozygotes. This approach
is generally valid for alleles with dominant, recessive,
or multiplicative effects; it fails only for very rare
recessive alleles and, correspondingly, for very
common dominant alleles. However, in these extreme
cases, the additive variance vanishes and association
is difficult to detect without recourse to highly
selected populations.

2.2 Haplotypes

The T individual SNPs may occur in up to 2T distinct
allelic combinations. Due to LD, however, a test
population often exhibits only a smaller subset of H
haplotypes. Using η to label the haplotype, η = 1 to H,
the phenotypic shift for an individual with haplotypes
η and η′ is defined in analogy to the SNP shifts as
(aη + aη′)/2, where

a I A I A p a
G

η γ γ γ γ
γ

η η= − − −
=

∑ [ ( | ) ( | ) ( )]
1 2

1

2 1

The indicator function I (Aγ1|η) has value 1 if
haplotype η has allele Aγ1 and is 0 otherwise.
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Similarly, I (Aγ2|η) = 1 if haplotype η has allele Aγ2
and is 0 otherwise. The difference in these terms,
either +1 or -1, less its mean value 2pγ - 1, multiplies aγ
to yield the phenotypic shift in haplotype η due to the
phase of SNP γ and is summed over the G causative
SNPs.

While the precise value of a η depends on the
particular alleles occurring in haplotype η, the distri-
bution of values of a η may be estimated by
considering the term I (A γ1|η) - I (A γ2|η) to be a
random variable taking the value +1 with probability
p γ and the value -1 with probability 1 - pγ. This mean
probability approximation recovers the SNP allele
frequencies p γ and ensures that the mean of a η is
zero. The variance Var(a η) may be obtained under a
random phase approximation in which the directions
of the shifts a γ are uncorrelated. With this assump-
tion, the variance of the sum over SNPs is the sum of
the individual variances even if the SNPs are in LD.
The contribution of SNP γ to the variance of the
haplotype phenotypic shift a η is

p p a p p a

p p

γ γ γ γ γ γ

γ γ

[ ( )] ( )[ ( )]

( )

1 2 1 1 1 2 1

4 1

2 2 2 2− − + − − − −

= − aγ

γσ

2

2

2= .

The final variance for the distribution of haplotype-
dependent shifts a η is

Var a G G( )η σ= 2
2

where σG
2 is the mean variance of causative SNPs as

previously defined.

The mean phenotypic shift contributed by haplotype
η is p a p p aη η η η η

2 2 1 2+ −( )( / ), or simply pηaη. The
phenotypic variance contributed by this haplotype is
defined as σ η

2 :

σ η η η η η η

η η η

2 2 2 2

2

2 1 2

1 2 1

= + −

= −

p a p p a

p p a

( )( / )

( / ) ( ) .

When the number of haplotypes is large, the
probability pη for each haplotype is small and
σ η η η

2 2 2≈ p a / . The mean value of σ η
2 is defined as

σH
2 :

σ σ σ
η

Η

η
η

η ηH
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2 2
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−
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where we have assumed that pη and aη are uncorre-
lated. Note that the total haplotype-based phenotypic

variance, H Gσ 2 , equals the total SNP-based
phenotypic variance, G Gσ 2 .

In the special case when G = 1 and only one of the
SNPs has a non-zero phenotypic shift aγ, each
haplotype η will have a phenotypic shift aη of either
2(1 - pγ)aγ or -2pγaγ, depending on whether Aγ1 or Aγ2
is included. The corresponding values for σ η

2 will be
p pη η γσ( )1 2− multiplied by either pγ/(1 - pγ) or (1 -
pγ)/pγ. Assuming that Aγ1 is the minor allele with
frequency pγ, the haplotypes with the largest effect
have variance

σ ση η η γ γ γ
2 2

1 1= − −p p p p( )[ / ( )] .

Under the assumption of minimal selection, the SNP
minor allele frequency should be close to 50% and the
haplotype frequency should be closer to 1/H. The
variance then simplifies to ( / )1 2H σ γ , the same result
as ( / )G H Gσ 2 because G = 1.

2.3 Regression test for association

A suitable test statistic for association of either a
SNP-based or haplotype-based marker with a quanti-
tative phenotype is the coefficient b1 for a regression
model of the phenotypic value on the marker dose
[17]:

X b fi i i= +
1
δ ε .

The N individuals included in the sample are specified
by the index i. The difference between the marker
frequency in individual i and in the total sample is δfi
and the residual εi is uncorrelated with δfi. Under the
null hypothesis, the variance of εi is equal to the total
phenotypic variance of 1. Under the alternative
hypothesis, the expected value for b1 is

b M f1
= σ σ/

where M is a generic index representing one of T total
SNPs for a SNP-based test or one of H haplotypes for a
haplotype-based test. The additive variance of the
marker is σ M

2 , either σ γ
2 for a SNP-based test or σ η

2

for a haplotype-based test. The variance of the marker
frequency is σ f

2 and equals p (1 - p)/2 for a marker
with frequency p under Hardy-Weinberg equilibrium.
Since the variance of εi is close to 1 whenσ M

2 is small,
the variance of the estimator for b1, σb

2 , is the same
under the null hypothesis, b1 = 0, and the alternative
hypothesis, b1 > 0, and
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σ σb fN
2 2

1= / ( )

for a one-sided test. Using a two-sided test would be
more appropriate for a quantitative phenotype in
which extreme high and low values are equally
relevant, but would not materially affect any of our
conclusions.

Combining the expected value for the regression
coefficient with the standard deviation of the
estimator, the expected p-value for a one-tailed test
for a marker with additive variance σM, using a
Bonferroni correction for M multiple tests, is

p value− = −1 0 5[ ( )] ..Φ N M

Mσ

(1)

The asymptotic expansion for Φ(z) yields

p value− ≈ −−M N NM M( ) exp( / ).2 2
2 0 5 2π σ σ

as an approximation valid for small p-values.

The relative significance of haplotype-based regres-
sion tests and SNP-based regression-tests may be
obtained from this asymptotic expansion as

p value p value− −

= −

( ) / ( )

( / ) ( / )exp[ (/

HAP SNP

H G H T N G

1 2 2

1σ G H/ ) / ].2

Setting the value of this ratio to 1 and solving for H
yields an approximate expression for the number of
haplotypes at which the significance for the
haplotype-based test and the SNP-based test are
identical:

H G T G N G≈ + +[ ln( / ) / ( )]1 2 3
2σ

to lowest order. If all the SNPs are causative, G and T
are identical, and the expected significance levels of
SNP-based and haplotype-based tests cross when H =
G. When T is larger than G, there is a small
logarithmic correction and the value of H at the cross-
over is slightly larger than G. This correction can be
very small even when T is much larger than G
because the logarithmic term ln(T /G) is further
reduced by the term N Gσ 2 , approximately equal to
the square of the z-score corresponding to a signifi-
cant finding (see below). For a test of ten markers, for
example, a p-value of 0.005 corresponding to a final

false-positive rate of 5% implies a z-score of 2.58 and
N Gσ 2 ~ (2.58)2 ~ 7. Thus, to a good approximation,
the cross-over between the significance of SNP-based
tests and haplotype-based tests occurs when the
number of haplotypes is just larger than the number of
causative SNPs.

We now calculate the population sizes required for
adequate power to detect true associations. For a
corrected final Type I error rate of α, the uncorrected
p-value for a significant finding must be smaller than
α/M. The Type II error rate β has no multiple testing
correct ion. Defining the normal deviates
z MMα α/ ( / )= −−Φ 1 1 and z 1

1
−

−=β βΦ ( ), the
resulting sample size required to detect a marker
contributing phenotypic variance σM

2 with power 1-β
is

N z zREGR M M= − −( ) /
/α β σ

1

2 2 .

(2)

A simplified approximation for the sample size may
be obtained by noting that zα/M is typically larger than
z1-β. When α = 0.05, M = 10 and 1-β = 0.8, for example,
zα/M = 2.58 while z1-β = -0.84. Neglecting z1-β relative
to zα/M, which is equivalent to setting the power to
50%, yields

N M M≈ 2
2

ln( / ) /α σ .

The asymptotic expansion zα ~ 2 ln(1/α), valid for
small α, is the source of the logarithmic term ln(M/α)
in this expression.

The relative population sizes required for haplotype-
based and SNP-based regression tests may be
obtained from this asymptotic expansion as

N HAP N SNP H G H T( ) / ( ) ( / ) ln( / ) / ln( / )= α α .

Again, the cross-over in power between haplotype-
based tests and SNP-based tests occurs close to H = G
with a logarithmic correction shifting the exact
location to a slightly larger value. A low-order
approximation for the cross-over is

H G T G T≈ + +{ ln( / ) / [ ln( / )]}1 1 α .

Since G ≥ 1 and α < 1, the cross-over occurs in the
region G ≤ H < 2G.
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2.4 ANOVA test for haplotype association

ANOVA may also be used to test for association
between haplotype pairs and a quantitative
phenotype. In a typical ANOVA test, N individuals are
sorted into K = H(H+1)/2 distinct haplotype pairs and
the between-haplotype-pair phenotypic variance is
compared to the within-haplotype-pair phenotypic
variance. A significant finding in an ANOVA test is
approximately equivalent to detecting a significant
difference in mean phenotype value for at least one of
the C = K(K-1)/2 possible pair-wise comparisons. The
most significant finding will typically arise from the
difference ∆ in mean phenotypic value between the
pair of genotypes with the most extreme positive and
negative shifts.

The expected maximum difference ∆ is obtained from
the distribution of aη as

∆ = 2 80 5 2 0 5[ ( )] ( ). .Var ora HH Hσ .

The variance for this test statistic is

σ σ2 2

1 1= + ′R n n[( / ) ( / )]

where n and n′ are the number of individuals in the
total sample size of N in the two extreme classes. By
earlier assumption, the residual phenotypic variance
σ R

2 is close to 1. Under the assumption of weak
selection, each p η is 1/H. If the most extreme
phenotypic shifts correspond to homozygous
genotypes, then n and n′ are both approximately
N/H 2 and the variance is σ2 = 2H 2/N. If the genotypes
with extreme phenotype values are both heterozy-
gous, the variance is H 2/N. The additive model
suggests that homozygotes will be at least tied for the

maximum phenotypic shift. The p-value for the
comparison of extreme phenotypes is

p value− = −

= −

1

1 0 5 0 5 0 5

[ ( / )]

[ / )]. . .

Φ ∆

Φ(2

σ

σ Η

C

CN J H

(3)

where the factor of C is the correction for multiple
hypothesis testing and J = 1 if homozygotes are
extreme, 2 if heterozygotes are extreme and 1.5 if one
homozygote and one heterozygote are extreme.

As with the regression test, the residual variance is
close to 1 and an expression yielding the required
sample size is 1/σ2 = (zα/C - z1-β)

2/∆2,

N z z H JANOVA C H= − −( ) /
/α β σ

1

2 2

4 .

(4)

The ratio NANOVA/NREGR of the sample size required
for an ANOVA test, relative to that required for a series
of H regression tests, is obtained from the ratio of
Equation 4 to Equation 2. An estimate for this ratio,
valid when zα/C and zα/H are both large compared to
z1-β, is

N N H J C HANOVA REGR/ ( / ) ln( / ) / ln( / )≈ 4 α α .

The logarithmic dependence varies slowly and the
factor H/4J explains most of the relative efficiency.
When the number of haplotypes is small, ANOVA is
more powerful. A cross-over occurs near H = 4 if
homozygotes are extreme and near H = 8 if heterozy-
gotes are extreme. Beyond the cross-over, the
regression test is more powerful.
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Table 1: Summary of association tests.

Marker type SNP Haplotype Haplotype pair

Test Regression Regression ANOVA

Number of markers G causative SNPs
T total SNPs

H H

Phenotypic variance explained by markers G
G

σ 2

H
H

σ 2

H
H

σ 2

Observed variance per causative marker σ
G

2 σ σ
H G

G H
2 2= ( / ) σ

H

2

p-value for N individuals 1 0 5− [ ( )].Φ N
G

Tσ 1 0 5− [ ( )].Φ N
H

Hσ 1 2 0 5−{ [ ( / ) ]}.Φ NJ H
H

Cσ
with J = 1, 1.5 or 2;
C = K(K-1)/2; and
K ≈ H(H+1)/2

N for Type I error α and power 1-β ( ) /
/

z z
T Gα β σ− −1

2 2

( ) /
/

z z
H Hα β σ− −1

2 2

( ) /
/

z z H J
C Hα β σ− −1

2 2

4



2.5 Comparison of tests using SNPs and
haplotypes

In this section, the analytical theory developed above
and summarised in Table 1 is used to explore the
relative power of SNP-based regression tests,
haplotype-based regression tests and haplotype-pair-
based ANOVA tests.

For comparisons between SNP-based and haplotype-
based tests, the total number of SNPs, T, is fixed at 20.
The number of causative SNPs, G, is varied from 1 to
10 and the number of haplotypes, H, is varied from 1
to 100. Under these general constraints, chosen to
characterise a typical quantitative trait locus (QTL),
we examine two models. In the first model, with
results depicted in Figure 1, the additive variance per
SNP is fixed at 0.025, implying a total additive variance
that varies from 0.025 (one causative SNP) to 0.25 (ten
causative SNPs). In the second model, with results
depicted in Figure 2, the total additive variance is
fixed at 0.075, implying an additive variance per SNP
that varies from 0.075 (one causative SNP) to 0.0075
(ten causative SNPs). These two models are identical
when 3 of the 20 SNPs are causative.

In Figure 1, the top series of panels illustrates the
expected significance for a fixed population size of
300 and the bottom series illustrates the population
size required to attain a p-value of 0.05 (5% false-
positive rate including the multiple-testing correction)
and a power of 0.8 (20% false-negative rate) for the
haplotype-pair ANOVA test (dot-dashed line), the
haplotype regression test (dashed line) and the SNP
regression test (solid line). The left panels correspond
to one causative SNP, the middle panels correspond
to three causative SNPs and the right panels
correspond to ten causative SNPs.

The top middle panel shows that the SNP-based
regression test yields a p-value of approximately 0.06
when the population size is fixed at 300. When there
are only two haplotypes, the haplotype-pair ANOVA
test yields the most significant finding. For three or
four haplotypes, the haplotype regression test is the
most significant. For five or more haplotypes, the
SNP-based test is more significant than either
haplotype-based test. The cross-over between
SNP-based markers and haplotype-based markers
occurs close to the number of causative SNPs, three in
this example.

Because the additive variance per SNP is constant in
Figure 1, the results for SNP-based markers do not

depend on the number of causative SNPs;
consequently, the solid lines showing the SNP results
are in identical positions in the left, middle and right
panels. The haplotype results do depend on the
number of causative SNPs, as does the location of the
cross-over between haplotype-based tests and
SNP-based tests. In the left panel, for one causative
SNP, the cross-over occurs between two and three
haplotypes; in the middle panel, for three causative
SNPs, the cross-over occurs between four and five
haplotypes; and in the right panel, for ten causative
SNPs, the cross-over occurs between ten and eleven
causative SNPs. These results agree with the analytical
approximation that the cross-over occurs when H is
just larger than G.

Comparing the two haplotype tests, it is evident that
the ANOVA test for haplotype pairs is usually less
powerful than the regression test for haplotypes. The
cross-over occurs when the number of haplotypes is
close to three.

The bottom series of panels of Figure 1 illustrates the
same behaviour in terms of the population size
required for significance. Within each panel, as the
number of haplotypes increases from left to right, the
population size required for haplotype-based tests
increases while that required for SNP-based tests does
not vary. Across the three panels, as the number of
causative SNPs increases from one to ten, haplotype-
based tests require smaller population sizes. This
occurs because having more causative SNPs than
haplotypes implies that some haplotypes must
contain multiple causative SNPs, making these
haplotypes easier to detect. As before, the cross-overs
between SNP-based and haplotype-based tests occur
when the number of haplotypes is close to the
number of causative SNPs in the model.

In Figure 2, the top panels again depict p-values and
the bottom panels again depict population sizes
required for significance, and the left, middle and
right panels again show results for one, three and ten
causative SNPs. A constant additive variance is
divided equally among the causative SNPs and
SNP-based tests are consequently more powerful
when the number of causative SNPs is smaller. Thus,
the p-values and population sizes for SNP-based tests
show an unfavourable increase from the left to middle
to right panels. Within each panel, the results for
SNP-based tests are not sensitive to the number of
haplotypes included in the model, as was observed in
Figure 1. Since the total variance arising from the
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genetic markers is held constant, the haplotype-based
tests are not sensitive to the number of causative SNPs
and the haplotype results are constant in the left,
middle and right panels (note the change of scale in
the top left panel). Within each panel, the haplotype-
based tests become less favourable as the number of
haplotypes increases from left to right.

In Figure 2, as in Figure 1 before, the cross-over in
power between haplotype-based tests and SNP-based
tests occurs when the number of haplotypes is just
larger than the number of causative SNPs. In the left
panels with one causative SNP, the cross-over occurs
between two and three haplotypes; in the middle
panels with three causative SNPs, the cross-over
occurs between four and five haplotypes; and in the
right panels with ten causative SNPs, the cross-over
occurs between ten and eleven haplotypes.

Furthermore, the cross-over between the haplotype-
pair ANOVA test and the haplotype regression test
occurs between two and three haplotypes, also as was
seen in Figure 1.

We note finally that, in a previous investigation of
association tests in a different context, we compared
results from analytic approximations as in Table 1,
from numerical solutions to the non-linear equations
appropriate for the asymptotically normally distrib-
uted test statistic and from exact numerical
calculations based on the true underlying multinomial
distribution of genotype frequencies sampled from a
population [18]. When population sizes required for
specified selectivity and sensitivity were calculated by
the three methods, the relative differences were
usually quite small, below 5%. In the examples
provided here, the analytical approximations are
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Figure 1: For comparisons between SNP-based and haplotype-based tests, the total number of SNPs is fixed at 20. The number of
causative SNPs is 1 (left panels), 3 (middle panels) or 10 (right panels). The number of haplotypes, H, is varied from 1 to 100 within
each panel. The additive variance per SNP is fixed at 0.025. The top series of panels illustrates the expected significance for a fixed
population size of 300 and the bottom series illustrates the population size required to attain a p-value of 0.05 (5% false-positive rate
including the multiple-testing correction) and a power of 0.8 (20% false-negative rate) for the haplotype-pair ANOVA test
(dot-dashed line), the haplotype regression test (dashed line) and the SNP regression test (solid line). Haplotype-based tests and
SNP-based tests cross in power when the number of haplotypes is just larger than the number of causative SNPs.



effectively expansions ordered by the additive
variance per marker and are likewise expected to be
accurate to 5%, except when the additive variance per
marker is large, on the order of 0.05 or greater. Effects
of this magnitude occur only at the extremes of the
examples provided: in Figure 1, the rightmost panel
for haplotype-based markers with five or fewer
haplotypes, and in Figure 2, the leftmost panel for
SNP-based markers. In the present context of
complex traits, more accurate descriptions of these
extreme cases are not necessary because the strong
genetic effects approach major gene effects that are
readily detected even in small populations.

3. Review

As the use of SNPs and SNP-based haplotypes for
association tests is still in its early stages, the number
of published reports comparing these methods is

limited. Here we focus on three recent examples: two
experimental studies and one simulation study.

The first example is an analysis of SNPs around the
apolipoprotein E (APOE) gene by Martin et al. [19].
The APOE-4 allele has been demonstrated to increase
the risk for developing late-onset Alzheimer’s disease
(AD) [20-23]. As part of a multifaceted study, Martin et
al. compared the p-values obtained for linkage of six
SNPs with AD using one-locus, two-locus and three-
locus tests. In one series of tests, the single causative
mutation was included in the marker set. A single-
locus test, corresponding to a SNP-based test, readily
identified this mutation. Multiple-locus tests,
corresponding to haplotype-based tests, did not
enhance the significance substantially. Only in a
second series of tests, excluding the causative
mutation from the marker set, did they find a clear
advantage for the multiple-locus tests. The
likelihood-based method they employed made use of
familial information [24] and is therefore not an exact
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Figure 2: Same as Figure 1, except the total additive variance is fixed at 0.075, implying an additive variance per SNP that varies from
0.075 (1 causative SNP) to 0.0075 (10 causative SNPs). The middle panels of Figure 1 and Figure 2 share identical parameters.
Haplotype-based tests and SNP-based tests cross in power when the number of haplotypes is just larger than the number of causative
SNPs.



equivalent of the association tests considered here.
Nevertheless, their results are consistent with our
predictions when the causative mutation is included
as a marker: since there are many haplotypes but only
a single causative mutation, the single-locus test
should provide greater power than the multiple-locus
tests.

A second example concerns studies of the β2-adrene-
rgic receptor (β2AR). This G-protein coupled receptor
is expressed in airway smooth muscle cells and mast
cells and is the target of bronchodilating β-agonists,
such as isoprenaline, salmeterol and albuterol used in
the treatment of asthma [25]. Polymorphisms at
codons 16 (Arg to Gly) and 27 (Gln to Glu) have been
associated with response to β-agonist treatment
[26-29]. Between the β2AR transcription start site and
the intronless coding region is a 5′-leader cistron that
encodes a 19-aa peptide. Polymorphisms in this
region have been shown to affect β2AR expression
[30]. To understand the relevance of these and other
polymorphisms in β2AR, Liggett and co-workers
undertook an association study focusing on the
relationship between SNPs, haplotypes and response
to the bronchodilator albuterol [31].

This most recent Liggett study examined chromo-
somes from 23 Caucasians, 19 African-Americans, 20
Asians and 15 Hispanic-Latinos. A total of 13 polymor-
phic sites occurred in a region including ~ 700 nt of
ORF and ~ 1100 nt of 5′ UTR, including the 5′-leader
cistron. While 12 total haplotypes were identified,
only four had frequency above 5% in any ethnicity
and only three of these occurred at 2% frequency or
greater in the Caucasian population. In these three
haplotypes, 10 of the 13 SNPs were variable. The SNPs
and haplotypes were then tested for association with
albuterol response, adjusted for sex and baseline
severity, in a population of 121 Caucasian patients
with moderate asthma. A haplotype association test
was performed using ANOVA for the five haplotype
pairs observed in the treated population and SNP
main effects were tested using ANOVA for SNP
genotypes with p-values corrected for multiple
hypothesis testing. While the haplotype-based test
yielded a significant finding at a p-value of 0.007,
none of the SNP-based tests was significant at a
p-value of 0.05. The parameters we use to analyse
these findings are H = 3 haplotypes, T = 10 of the 13
SNPs which vary in these haplotypes and C = 10
possible pairwise comparisons between the five
haplotype pairs.

Using Equation 3, the characteristic haplotype contri-
bution to the phenotypic variance, σH

2, may be
estimated from the haplotype-based ANOVA to be
0.063. Had haplotype-based regression been
performed instead of ANOVA, we predict using
Equation 1 that a p-value of 0.008 would have been
observed. Although the small number of haplotypes
suggests strong LD between SNPs, sequence data
presented by Martin and co-workers demonstrates
that correlation between SNPs extends no further than
one or two SNPs, in accord with their observation that
no SNP correlated perfectly with any haplotype. We
next estimated the expected p-value from a
SNP-based regression test. The p-value resulting from
Equation 1, corrected for multiple hypothesis testing,
depends on the number of SNPs assumed to be
causative. If only two of the SNPs are causative, the
estimated p-value is significant at 0.0036. If five are
causative, however, the p-value is 0.15 and if all ten
are causative, the p-value is 0.49. Thus, with multiple
causative SNPs, the SNP-based associations may not
rise to significance. Therefore, the Liggett study may
be consistent with simple additive effects from
multiple causative SNPs; unique or non-additive
interactions between SNPs may not be required to
explain the data. A larger population might be
required to verify the existence of non-additivity
because this series of experiments, with insufficient
power to detect the simple main effect of individual
SNPs, is unlikely to have sufficient power to detect the
interaction terms in an ANOVA model. Similarly,
although a model including haplotype main effects
and haplotype-haplotype interactions would be
expected to yield significance for the main effects, it is
unlikely that the interaction terms would be
significant.

The final example is a report by Long and Langley of a
series of simulations designed to assess the power of
various association studies [32]. Although the details
of the simulation model, including the use of haploid
rather than diploid genomes for estimates of the
power of haplotype-based association studies, are
different from the model we consider, the essence of
the model is the same: multiple polymorphic markers
exist in LD with each other and with a quantitative trait
nucleus that is not under selective pressure. Long and
Langley report, based on their simulations, that tests
which consider each single marker in turn have power
similar to or greater than haplotype-based tests. We
reach the same conclusion with our analytical results,
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provided that the total number of haplotypes is larger
than the total number of SNPs.

Long and Langley also investigate the effects of
increasing marker density relative to a parameter 4Nc,
a measure of the extent of LD along a chromosome.
Once the marker density is comparable to the inverse
of this length, the simulation results suggest that it is
more powerful to increase the number of individuals
genotyped than to increase the number of markers
tested. Our findings are similar, with the extent of LD
expressed in terms of the relative number of SNPs and
haplotypes.

4. Conclusion and expert opinion

We have examined the power of association studies
using regression tests and ANOVA to identify
SNP-based and haplotype-based markers for quantita-
tive traits. Our primary result is that SNP-based tests
are more powerful when the number of causative
SNPs is smaller than the number of haplotypes and the
SNP marker set includes the causative polymor-
phisms. Since only one or two causative SNPs might
be expected in a typical QTL and the number of
haplotypes is almost certainly larger, SNP-based tests
may be preferred when genotyping studies are
preceded by a search for high-frequency genetic
variants in candidate regions.

Simple formulae estimate the sample size require-
ments and p-values for SNP-based and
haplotype-based tests. When haplotypes are the
preferred marker set, results derived from analytical
theory indicate that ANOVA tests of haplotype pairs
should only be used when the number of haplotypes
is very small. When the number of haplotypes
increases beyond four or five, a regression test of
haplotype main effects has greater power.

These predictions agree with literature reports. We
also support simulation findings that increasing the
sample size of a study is more important than
increasing the number of SNPs once the density of
SNPs is comparable to the length scale of LD.

We now revisit the main assumptions of our model
and describe how generalisations may shift the
balance between SNPs and haplotypes. The first
assumption is that every causative polymorphism is in
the marker set. If this assumption is violated, detecting
an association requires LD between the causative
polymorphism and the SNPs or haplotypes available

as markers and the relative power of the two marker
sets depends on the details of the genetic model. At
one extreme, a non-causative SNP marker may be in
complete LD with a causative polymorphism missing
from the marker set, essentially reproducing the
results obtained here that tend to favour SNPs as
markers. At the other extreme, it is possible to specify
a model in which no individual SNP is linked to a
causative polymorphism while haplotypes show
complete linkage, favouring haplotype markers by
necessity. Real-word examples will fall between these
extremes and the experience of Martin et al. indicates
that a reasonable compromise may be to use
multiple-locus tests, with the number of loci included
being a function of the decay of LD across individual
SNPs.

In this context, we note that LD implicit in the
existence of haplotypes also indicates that, under the
assumptions of the model, causative SNPs that are in
LD with each other may show enhanced correlation
with a quantitative phenotype. This effect is the basis
of our results for the power of haplotype-based
markers but, for simplicity, was neglected in obtaining
results for SNP-based markers. Including these effects
for SNP-based markers enhances their effective
power. Thus, the results reported here may underesti-
mate the power of SNP-based markers.

The second assumption, purely additive contribu-
tions, may be violated in either direction: the
combined effect of a pair of polymorphisms may be
enhanced or diminished relative to their simple sum.
An enhanced effect suggests that the haplotype
bearing this set of polymorphisms will show greater
association than expected under an additive model,
which may indicate a preference for haplotype
markers over SNP markers. Similarly, haplotypes
bearing polymorphisms that combine for a
diminished effect may indicate a preference for SNP
markers.

A related epistatic effect is the presence of dominant
or recessive alleles at a single SNP locus. Barring
extreme cases of rare recessive alleles, it is possible to
describe the phenotypic contribution in terms of an
effective additive model. Similarly, when haplotypes
are examined, the contribution from a single
non-additive locus may be described in terms of an
effective additive contribution and the conclusions
reached here should still be valid. If there are multiple
loci with dominant and recessive alleles, the relative
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power of SNPs and haplotypes may depend on the LD
between the different loci.

The third set of assumptions, small contributions and
lack of selection, may be violated when a single SNP
or haplotype is responsible for a major contribution to
the phenotypic value. As discussed previously, large
contributions totalling 5% or more of the overall
phenotypic variance are readily detected by associa-
tion in population sizes in the low hundreds and may
even be amenable to traditional family-based linkage
studies. One would expect that both SNP markers and
haplotype markers would easily show significant
association in these cases.

The assumed absence of selection in the model is
consistent with studies of late-onset diseases and
drug-response phenotypes and, for our purposes, is
equivalent to assuming that LD is uncorrelated with
SNP effects. It is unlikely that selection is completely
absent and in early-onset diseases selection may be
very strong. One outcome of strong selection is that a
polymorphism making a large, deleterious
phenotypic contribution may have low population
frequency. Since the additive variance of a
low-frequency marker is approximately proportional
to the product of its frequency and the square of its
contribution, higher-frequency polymorphisms
making smaller contributions may be easier to detect.
This conclusion applies to SNPs as well as haplotypes.

Consider, however, pairs of causative polymorphisms
occurring in a haplotype carrying multiple unfavour-
able polymorphisms. Negative selection will tend to
eliminate the extreme multiple-hit haplotypes from
the population. These are the haplotypes required for
greatest significance of haplotype-based tests and
removing them reduces the power of the haplotype
marker set. In contrast, the individual causative alleles
may still have a considerable population frequency,
much as heterozygote populations are maintained in
diseases caused by a recessive allele at a single locus.
When the haplotypes conferring an extreme
phenotypic value are eliminated at a faster rate than
the underlying SNPs, the causative SNPs may show
greater significance than haplotypes and SNP-based
tests will tend to be favoured over haplotype-based
tests. To summarise, our base assumption is lack of
selection and consequently no correlation between
LD and SNP effects; when selection is present, it may
create a form of LD that segregates deleterious
mutations onto different haplotypes and favours SNPs
over haplotypes for association tests.

A more complete examination of the points raised
above might be required to reach more general
conclusions. Epistatic effects, the presence of LD
induced by selection pressure and the optimal marker
set when the causative polymorphisms are not
included in the set of known SNPs are three areas
where a more complete theoretical treatment or
simulation studies could provide additional guidance.
We anticipate that the optimal marker set may
obtained by identifying linkage groups containing a
small number of SNPs, essentially sub-haplotypes or
‘haplets’, and using these as a set of polymorphic
markers. This would be similar to the approach of
Martin et al. except that the number of markers
grouped for a multi-locus test would depend on
estimates of the local extent of LD rather than on a
global estimate.

If epistatic effects are large, models including
SNP-SNP or haplotype-haplotype interaction terms
may be necessary. The haplotype regression test, for
example, may be considered an ANOVA test for
haplotype main effects; including the haplotype-
haplotype interaction terms, resulting in an analysis of
covariance (ANCOVA) or multivariate analysis of
variance (MANOVA) test applied to haplotypes,
should be equivalent to the haplotype-pair ANOVA
test used here. For the additive models we considered,
the test of main effects is usually more powerful than
the test including the interaction terms. It would be
interesting to explore how large the interaction terms
must be for their inclusion to yield a more powerful
test.

Secondary assumptions that are less likely to affect the
main conclusions can also be readily investigated. For
example, in the examples shown in Figures 1 and 2,
each causative SNP contributed equally to the total
additive variance. In reality, a power-law-like distribu-
tion should govern the effect size: most loci make
small contributions, while a few loci make large
contributions. A significant finding of association
depends on the most extreme additive variance in the
SNP marker set rather than the mean variance among
the causative markers. Similarly, a significant finding
for the haplotype marker set depends on the
haplotype with the most extreme additive variance
rather than on the mean additive variance per
haplotype, as was used here. Thus, it may be
appropriate to include a more detailed description of
the distributions of additive variance or the underlying
distributions of phenotypic shifts, allele frequencies
and haplotype frequencies. Nevertheless, since the
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extreme value distribution has only a slow logarithmic
divergence from the population mean, the error made
in using the mean values is not likely to affect the
conclusions.

Finally, although the subject of this report is individual
genotyping, association tests using pooled DNA are
also possible. A pooling study requires approximately
25% more individuals than an individual genotyping
study [18], an increase in cost that may be insubstantial
compared to the cost reductions arising from pooling.
Current technologies for pooled DNA can measure
allele frequencies but not haplotype frequencies. This
factor in favour of SNP-based markers might be the
most important consideration for many studies.
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