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Introduction

Association studies detect markers in linkage disequilibrium
with causative genetic polymorphisms. Single-nucleotide
polymorphisms (SNPs) occur at a sufficient density to provide
a suitable set of biallelic markers.1 Linkage disequilibrium for
these markers has been estimated to extend to 5000–100 000
nucleotides,2–4 suggesting that many thousands of such

markers are required for a full-genome scan.5 These markers
have an additional benefit: nucleotide substitutions in protein-
coding regions, particularly those that change amino acid
sequence, may be functional polymorphisms that directly
affect phenotypic values. Association tests can require
thousands to tens of thousands of individuals and have
spurred the growth of population-level DNA repositories,
unselected for any particular phenotype, as a resource whose
costs may be shared across multiple studies.6–8

The most powerful methods for detecting the association
between a marker and a phenotype require individual geno-
typing. Experimental savings come by testing allele frequency
differences between DNA pooled from individuals selected
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according to phenotypic value.9–12 A conventional selection
scheme for a disease phenotype is to classify individuals as
affected or unaffected, analogous to a case-control study.
Selection based on underlying disease-risk phenotypes, includ-
ing quantitative measures such as blood pressure or body mass
index is also possible, and may identify genetic markers for
disease predisposition.

While there has been a limited discussion of optimized selec-
tion criterion for pooled DNA studies in the context of human
genetics, association tests of DNA pooled on the basis of a
quantitative phenotype are analogous to selection experiments
for quantitative trait locus (QTL) mapping. Work in this field
has shown that, under certain cost assumptions, it is optimal
to genotype the upper and lower 27% of an unrelated popula-
tion to estimate the effect of a marker on a quantitative
phenotype.13–15 Studies of sib-pair designs have yielded related
findings.16

We applied similar techniques to provide optimized selec-
tion criteria for association studies of pooled DNA using the
allele frequency difference between pools as a test statistic. We
assumed that the samples were drawn from a pre-existing
population-level DNA repository collected from individuals
unselected for any particular phenotype, and that each indi-
vidual has been measured for a particular phenotype of interest;
the goal is to select pools to maximize the power of the test.

Assuming no experimental error in allele frequency measure-
ments on pooled DNA, we determine the selection thresholds
that maximize the power to detect association as a function of
the frequency, phenotypic displacement, and inheritance mode
of a functional polymorphism. The genetic parameters are also
described in terms of a genotype relative risk model. Power
calculations are then used to derive the repository size required
to detect association at specified false-positive and false-negative
rates. These calculations are performed at three decreasing
levels of accuracy: exact numerical calculations using the true
multinomial distribution of the test statistic; numerical calcula-
tions based on an approximate normal distribution of the test
statistic; and analytical approximations accurate for complex
traits where the polymorphism has a small effect on the
phenotype.

Results are depicted in terms of the repository sizes required
for three types of experimental designs for detecting associ-
ation with a quantitative phenotype: first, a pooled DNA test
using a conventional affected/unaffected classification; second,
a pooled DNA test of extreme individuals using optimized
selection thresholds; third, individual genotyping of the entire
population. We conclude with a discussion of the reduction in
power of pooled DNA tests due to experimental measurement
error and with suggestions for effective use of pooled DNA
tests in practice.

Materials and methods

The calculation of optimized selection thresholds begins with
a model for the genotype-dependent distribution of pheno-

typic values. A quantitative phenotype, denoted X, is standard-
ized to have unit variance and zero mean. The phenotype is
hypothesized to be affected by alleles A1 and A2, with frequencies
p and 1 − p, respectively, at a particular QTL. The population
frequencies P(G) for genotypes G = A1A1, A1A2 and A2A2 are
assumed to obey the Hardy–Weinberg equilibrium. Using
standard notation for a variance components model,17 the effect
µG of genotype G on phenotype X is a, d and –a, for genotypes
A1A1, A1A2 and A2A2, respectively. These displacements are
each offset by subtracting (2p – 1)a + 2p(1 – p)d to preserve
the overall phenotypic mean of zero.

The inheritance mode of the QTL is represented by the dis-
placement d of the heterozygote, for example purely recessive
(d = –a), additive (d = 0), or dominant (d = +a) inheritance.
The inheritance mode partitions the phenotypic variance due
to the QTL into the additive variance σA

2 and the dominance
variance σD

2, with

σA
2  + σD

2  = 2p(1 – p)[a – d(2p – 1)]2 + 4p2(1 – p)2d2.

This partitioning is important because, as will be seen below,
pooled tests are sensitive primarily to the additive component
of variance. Note that the additive component may be large,
even when the inheritance is purely dominant or recessive. The
contributions to the phenotype from remaining genetic and
environmental factors are assumed to follow a normal distri-
bution with residual variance σR

2,

σR
2 = 1 – (σA

2 + σD
2).

The genotype-dependent phenotype distributions for each
genotype are

P(X|G) = (2πσR
2)–1/2exp[–(X – µG)2/2σR

2],

normal distributions centred at µG with width σR. The overall
phenotype distribution is the weighted sum of the distribu-
tions from each genotype,

P(X) = ΣGP(X|G)P(G).

For a complex trait in which the QTL makes a small contri-
bution, the three underlying distributions may be unresolved
in the observed P(X).

This variance components model may be connected to an
equivalent affected/unaffected genotype relative risk model by
specifying a threshold phenotypic value XT that classifies indi-
viduals as affected (X > XT) or unaffected (X < XT). The pro-
portion r of the total population that is affected is the overall
risk or disease prevalence; the probability that an individual
with genotype G is affected, divided by the corresponding
probability for an individual with genotype A2A2, is the
genotype relative risk.

In the tests of pooled DNA considered here, a sample repos-
itory of total size N serves as the source of DNA to be selected

1
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for one of two pools; not every individual need be selected.
The test statistic is the difference in the frequency that a par-
ticular allele, here always assumed to be A1, occurs in the two
pools. For a quantitative phenotype, it is natural to specify an
upper threshold XU and a lower threshold XL as the selection
criteria. Individuals with phenotypic values above XU are
selected for the upper pool; individuals with phenotypic values
below XL are selected for the lower pool; and individuals with
phenotypic values between XL and XU are not pooled at all.
The number of individuals selected for each pool is ρN. The
fraction ρ expressed in terms of XU is

ρ = ΣGΦ[–(XU – µG)/σR]P(G),

which is solved numerically to determine XU. The genotypes
of individuals selected by X > XU follow a multinomial distri-
bution; the probability θU(G) that an individual selected
for this pool has genotype G is Φ[–(XU – µG)/σR]P(G)/ρ.
A multinomial distribution is defined similarly for the lower
pool,

1 = ΣGθL(G) = ρ–1ΣGΦ[(XL – µG)/σR]P(G),

using the lower threshold XL,
A pooling design based on an affected/unaffected classifica-

tion is similar: affected individuals are selected for the upper
pool; an equivalent number of suitably matched unaffected
individuals are selected for the lower pool. The selection
thresholds XU and XL are identical to the classification thresh-
old XT. The relative risk for genotype G, expressed in terms of
the pooling threshold, is [θU(G)/P(G)]/[θU(A2A2)/P(A2A2)].

The repository size N required to detect association
between genotype G and either the quantitative phenotype X
or the affected/unaffected classification depends on the desired
type I error rate α and type II error rate β, the chosen test
statistic, and the experimental design,18 as well as on the under-
lying genetic model. For a one-sided test of a single marker,
α = 1 – Φ(zα) and 1 – β = Φ(–z1–β), where Φ(z) is the cumulative
probability distribution for standard normal deviate z. For
a genome scan, the values α = 5 × 10–8 (zα = 5.33) and 1 – β =
0.8 (z1–β = –0.84) have been suggested.5 The null hypo-
thesis is denoted H0 with all µG equal to zero, and the alternative
hypothesis is denoted H1 with at least one non-zero µG.

An exact calculation of the repository size required to attain
desired error rates for a specified genetic model proceeds as
follows. First, a value of the pooling fraction ρ or the disease
prevalence r is selected. A trial repository size N is specified,
with the number of individuals n selected per pool set to the
integer part of ρN or rN. Next, the probability P0(i, j,k) of
selecting i individuals with genotype A1A1, j individuals
with genotype A1A2, and k individuals with genotype A2A2,
with i + j + k equal to n, is tabulated using the multinomial
distribution

P0(i, j,k) = [n!/(i!j!k!)](p2)i(2p – 2p2)j(1 – 2p – p2)k.

The frequency of allele A1 for this pool composition is
(2i + j)/2n. The probability that two pools selected in this
manner differ in frequency by at least ∆p is calculated as the
sum of P0(i, j,k)P0(i′, j′,k′) for all combinations of i, j,k and
i′, j′,k′ where

[2(i – i′) + ( j – j′)]/2n ≥ ∆p.

Significance at level α is attained by increasing ∆p until this
sum is less than or equal to α. If not even the maximum value
∆p = 1 is sufficient for significance at level α, then a larger
value of N is selected for the current value of ρ and the calcu-
lation begins anew. Otherwise, multinomial probabilities for
pool compositions are calculated under H1 using

PU(i, j,k) = [n!/(i!j!k!)]θU(A1A1)
i θU(A1A2)

j θU(A2A2)
k

for the upper pool and a similar term PL(i′, j′,k′), with θL

replacing θU, for the lower pool. The probability that the allele
frequency difference between the upper and lower pools is at
least ∆p is obtained as the sum of PU(i, j,k)PL(i′, j′,k′) for all
compositions i, j,k and i′,j′,k′ where [2(i – i′) + ( j – j′)]/2n ≥ ∆p.
If this probability is greater than or equal to β, the current N
is feasible for type I error α and type II error β and a smaller
value for N is attempted. This process continues until the
smallest feasible N is found.

For the affected/unaffected design, this procedure is fol-
lowed for each value of r. For the tail pool design, the smallest
feasible value for N is calculated as a function of ρ, and the
entire design is optimized by searching for the pooling fraction
ρ with the smallest feasible N.

When each pool contains a large number of individuals
and many copies of each allele, the distribution of allele fre-
quencies for the pool approaches a normal distribution. The
difference in allele frequencies between pools, which continues
to serve as the test statistic, approaches a normal distribution
as well. The pool sizes required to achieve specified error
rates are obtained accurately in this case by approximating
the multinomial distributions of allele frequencies as normal
distributions. Under H0, the mean of the test statistic is
zero and the variance is σ0

2/n = p(1 – p)/n, derived by noting
that the variance of the frequency difference is twice the
variance of the mean for a single pool of n individuals. The
allele frequency variance for an individual is p(1 – p)/2,
and averaging over the n individuals reduces the variance by
the factor n.

Under H1, the expected allele frequency difference ∆p is

∆p = pU – pL = ΣG[θU(G) – θL(G)]pG,

where the genotype-dependent allele frequency pG is 1 for
G = A1A1, 0.5 for A1A2, and 0 for A2A2. The variance is σ1

2/n,
where σ1

2 is obtained from the multinomial distribution,19

σ1
2 = ΣG[θU(G) + θL(G)]pG

2 – (pU
2 + pL

2).
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The repository size N required for type I error α and power

1 – β is n = [zασ0 – z1–βσ1]
2/∆p2.

For tail pools, ρ is then varied to find the smallest N.
The normal approximation underestimates the repository

size requirement relative to the exact results from the multi-
nomial distribution. When the sum of the alleles in both pools is
at least 60, the difference in repository sizes is no greater than
5%. We chose 60 alleles in both pools as the criterion for
switching from the multinomial to the normal calculation.
Standard algorithms were employed to perform the root
search for XU and XL, the optimization, and the integration
over the tail of a normal distribution.20

In the regime of typical complex traits, the effect of any
single QTL is small, the residual variance σR

2 is nearly 1, and
analytical results may be obtained by expanding ∆p to
second order in the effect size µG. This corresponds loosely
to a perturbation theory for probability distributions.21 The
∆p expansion in turn requires a Taylor series expansion
for Φ(z),

Φ(z – δ) = Φ(z) – δ(d/dz)Φ(z) + (1/2)δ2(d /dz)2Φ(z),

truncated at second order. The first derivative is

(d/dz)(2π)–1/2 dz ′exp(–z2/2) = (2π)–1/2exp(–z2/2) y,

where y is the height of the normal distribution at normal
deviate z, and the second derivative is

(d/dz)(2π)–1/2exp(–z2/2) = –yz.

Summing these terms,

Φ(z – δ) = Φ(z) – yδ – (1/2)yzδ2.

Substituting this approximation into the expressions for θ(G)
using δ = µG/σR and z = Φ–1(1 – ρ) yields for the tail design 

pU = P + (y/ρσR){ΣGP(G)pGµG} + (y|z|/2ρσR
2){ΣGP(G)pGµG

2}

and

pL = p – (y/ρσR){ΣGP(G)pGµG} + (y|z|/2ρσR
2){ΣGP(G)pGµG

2}.

The corresponding expressions for the affected/unaffected
pools, with z = Φ–1(1 – r), are

pU = P + [y/rσR]{ΣGP(G)pGµG} + [y|z|/2rσR
2]{ΣGP(G)pGµG

2}

and

pL = p – [y/(1 – r)σR]{ΣGP(G)pGµG} – 

[y|z|/2(1 – r)σR
2]{ΣGP(G)pGµG

2}.

The required sums are

ΣGP(G)pGµG = σA[p(1 – p)/2]1/2,

and

ΣGP(G)pGµG
2 = (1/2)(1 – σR

2) – 4p2(1 – p)2ad + 
(2p – 1)σD

2/2 ≈ σA
2/2.

The approximate value σA
2/2 for the second sum neglects the

dominance variance and is exact for purely additive inherit-
ance. It serves to simplify the final equations for ∆p. Little
error is made in the resulting ∆p for two reasons: first, even
with dominant or recessive inheritance, the additive variance
is often larger than the dominance variance; second, this factor
is part of a correction term that is already small.

The results for ∆p are

∆p = 21/2yσ0σA/ρσR,

tail pools, and

∆p = [1 + Φ–1(1 – r)σA/23/2σ0σR]yσ0σA/21/2r(1 – r)σR,

affected/unaffected pools.
To the same order of approximation, σ1

2 may be
equated with σ0

2, and the number of individuals required per
pool is

n = [zα – z1–β]
2σ0

2/∆p2.

The preceding three equations lead directly to our main
results, Eqns 1 and 2.

The perturbation theory above is valid when the expansion
parameters µG/σR are small, typically satisfied when σA

2/
2p(1 – p) is smaller than 1. In this regime, approximate
genotype relative risks may be obtained from the Taylor
series expansion for θ(G). To lowest order, the relative risk
for the heterozygote is 1 + (d + a)y/rσR, and for the A1A1

homozygote is 1 + 2ay/rσR. For additive inheritance, d = 0,
and the relative risk is multiplicative with allele dose when
ay/rσR is small.

If individual genotypes are measured for the N individuals
in the population, the regression coefficient b1 in the regres-
sion model

X = b1(pG – p) + ε

is a suitable test statistic. The residual contribution ε to the
phenotype has mean zero and is uncorrelated with pG. Under
H0, b1 has mean zero and variance:

Var(b1|H0) = N–1Var(X)/Var(pG) = 1/N[p(1 – p)/2].

Under H1, the expected value and the variance of b1 are

 
∞–

z

∫   ≡
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E(b1|H1) = Cov(X,pG)/Var(X) = σA[p(1 – p)/2]1/2

and

Var(b1|H1) = N–1Var(ε)/Var(pG) = σR
2/N [p(1 – p)/2].

The repository size required for a one-sided test of b1 with
Type I error α and power 1 – β is

N = [zα Var(b1|H0)
1/2 – z1–β Var(b1|H1)

1/2]2/[E(b1|H1)]
2,

which is presented in simplified form as Eqn 3.

Results and discussion

We consider two experimental designs using DNA pooled
from individuals selected from a pre-existing repository of
N samples: affected/unaffected pools, with DNA pooled from
n affected and n unaffected individuals; and tail pools, with
DNA pooled from the n most extreme individuals at each tail
of the phenotype distribution.

For the affected/unaffected design, the expected number of
affected individuals is n = rN, and an additional n suitably
matched controls are selected from the remainder of the popu-
lation. An analytical approximation for the repository size is:

Naff/unaff = [zα – z1–β]
2[σR

2/σA
2] · 2r(1 – r)2/{yr

2[1 + 

Φ–1(1 – r)σA/23/2σRp1/2(1 – p)1/2]2}, (1)

where yr is the height of the standard normal distribution at
Φ–1(ρ) (see Materials and methods for derivation). Repository
size requirements are minimized with a prevalence of 50%,
much larger than values realistic for complex disorders.

The tail pools are parameterized by the fraction ρ = n /N of
population N selected for each pool. An analytical approx-
imation for the repository size is

Ntail = [zα – z1–β]
2[σR

2/σA
2] · ρ/2yρ

2, (2)

where yρ is the height of the standard normal distribution at
Φ–1(ρ) (see Materials and methods for derivation). The design
is optimized by selecting ρ to minimize ρ/2yρ

2 and hence Ntail.
The optimal fraction, 27.03%, is independent of all remaining
parameters.

The repository size required to achieve the same error rates
using individual genotyping is

Nindiv = [zα – z1–βσR]2/σA
2, (3)

based on a regression model of phenotypic value on allele dose
(see Materials and methods for derivation).

Results of the analytical approximations are shown in Fig. 1
with individual genotyping serving as a reference. The tail
design, with ρ = 27% of the population selected for each pool,
requires a repository only 1.24-fold larger than required for

individual genotyping. It is also robust to variation in ρ near
its optimum, as values from 19% to 37% drop the efficiency
no more than 5%. In contrast, for 10% disease prevalence, the
affected/unaffected design requires a repository 5.3-fold
larger than that required for individual genotyping and is
4-fold less efficient than the tail design.

The effect of varying the inheritance mode is shown in Fig. 2
for tail pools. In this example, the type I error is 5 × 10–8, the
type II error is 0.2, and the displacement a is 0.25 in units of
the phenotypic standard deviation. The heterozygote displace-
ment d varies from –a, pure recessive inheritance, to +a, pure
dominant inheritance. Results are shown for three frequencies
of allele A1: P = 0.5, 0.1 and 0.01. Solid lines correspond to
exact numerical calculations. In the top panel showing the
repository size N, filled circles correspond to analytical
approximations, Eqn 1, and are virtually indistinguishable
from exact calculations. When P = 0.5, A1 and A2 have equal
frequencies, the additive variance is 0.03125, and the domin-
ance variance is 0 regardless of inheritance mode. Since the
population requirements depend primarily on the additive
variance, N is independent of the inheritance mode. For allele
frequencies below 0.5, the additive variance increases from
left to right and the population requirements decreases. The
maximum population is required when d = a/(2p – 1), which
always falls outside the range depicted. The bottom panel
depicts the corresponding values of ρ from the numerical cal-
culations. The optimal pooling fractions fall in a narrow range
from 24.5% to 27.5%, close to the analytical approximation
of 27.03%.

Figure 1 The repository size required to detect association for a QTL for 
a complex trait is shown for pooled DNA designs relative to individual 
genotyping designs having equivalent type I and type II error rates. The 
ratio Naff /unaff/Nindiv for affected/unaffected pools (dashed line) is shown 
as a function the disease prevalence r, while the ratio Ntail/Nindiv (solid 
line) is shown as a function of the fraction ρ of the total population 
selected for each pool. The optimum value of Ntail/Nindiv is 1.24 and 
occurs at ρ = 27.03% selected for each pool.
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The effect of varying the additive variance directly, or equiv-
alently the genotype relative risk for an allele of known fre-
quency, is shown in Fig. 3. The top panel of Fig. 3 shows that
analytical approximations for N from Eqns 1 and 2 (solid
circles) are nearly indistinguishable from the exact numerical
results (dashed and solid lines) when the genotype relative risk
is below a factor of 2–3. Type I and II error rates are 5 × 10–8

and 0.2, respectively, and the allele frequency is 0.1. The bot-
tom panel shows the corresponding allele frequency difference
that must be measured for a significant finding with a test of

pooled DNA. For example, alleles carrying a 1.5-fold hetero-
zygote relative risk, corresponding to an additive variance of
0.01, have a raw frequency difference of 0.04 at significance:
the upper pool has an allele frequency of 0.12 and the lower
pool a frequency of 0.08. The population size required to
achieve significance is 4700, with 1270 individuals selected
per pool.

Figure 2 The effect of varying the inheritance mode is shown for tail 
pools. The type I error is 5 × 10–8, the type II error rate is 0.2, and 
the displacement a is 0.25 in units of the phenotypic standard deviation. 
The displacement d of heterozygotes varies from –a, pure recessive 
inheritance, to +a, pure dominant inheritance. Three allele frequencies 
are shown, P = 0.5, 0.1 and 0.01. Solid lines correspond to exact 
numerical calculations. (a) The repository size N is shown. Filled circles 
corresponding to analytical approximations, Eqn 1, are virtually 
indistinguishable from exact calculations. (b) The optimal pooling 
fraction ρ from numerical calculations falls in a narrow range from 
24.5% to 27.5%, close to the analytical approximation of 27.03%.

Figure 3 (a) Exact numerical results for the repository size N required to 
achieve a type I error rate of 5 × 10–8 and type II error rate of 0.2 are 
shown for affected/unaffected pools (dashed line) and tail pools (solid 
line) as a function of the additive variance, also presented as the genotype 
relative risk for a heterozygote, for an allele with frequency 0.1 and 
purely additive inheritance. Analytical approximations (solid circles), 
Eqns 1 and 2, are indistinguishable from the exact results when the 
genotype relative risk is smaller than 2. The disease prevalence r is 10% 
for the affected/unaffected pools, and 27% of the population is selected 
for each of the tail pools. (b) The frequency difference at the significance 
threshold is shown for the same parameters. This threshold determines 
the measurement accuracy required for association tests based on 
pooled DNA.
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This analysis assumes that allele frequency measurement
error is negligible. Allele frequencies measured by most
technologies, including PCR amplification,22 kinetic PCR,23

denaturing high performance liquid chromatography,24

single-strand conformation polymorphism,25 pyrophosphate
sequencing,26 and mass spectrometry,27 are typically reported
with standard errors in the range 0.01 to 0.02. Assuming a
measurement error of 0.01, the measurement error in the
frequency difference is larger by a factor of , yielding a
final error of 0.014. Based on the measurement error, the allele
frequency difference of 0.04 in the example above corresponds
to a z-score of 2.86 and a type I error rate of 0.002.

While this error rate is much larger than the error rate of
5 × 10–8 required for a whole-genome scan, a practical solution
is to employ pooled allele frequency measurements as a pr-
screen; candidate associations identified by the pr-screen
may then be confirmed by individual genotyping of the entire
population, or possibly just the extreme tails. Setting a type I
error rate for the pr-screen of 0.01 (z-score of 2.33), corres-
ponding to an allele frequency difference of 0.033, implies a
100-fold savings over an equivalent study that does not
employ a pre-screen.

This experimental limitation sets a threshold for the effect
size that may be identified in a pooled DNA pre-screen. The
relationship between the expected value of ∆p and the para-
meters of the genetic model for a SNP with purely additive
inheritance is

∆p = 2.44 × [zα /(zα – z1–β)]p(1 – p)a,

where the initial factor of 2.44 arises from the optimized
pooled tail design, zα and z1–β corresponds to the type I and II
errors that would be obtained neglecting measurement error,
and a is the phenotypic displacement as before. For use in a
pre-screen with a P-value of 0.01 from measurement error
alone, zα = 2.33 is reasonable. To retain at least 95% of the
true associations, β should be no greater than 0.05, with
z1–β = –1.64. These parameters yield ∆p equal to 1.43 × p(1 – p)a,
or p(1 – p)a = 0.023 for the 0.033 frequency difference
threshold. For a minor allele frequency of 0.1, this corres-
ponds to a displacement a of 0.26 and an additive variance of
0.012; for allele frequencies of 0.5, the displacement is 0.092
and the additive variance is 0.0042. Thus, the pre-screen retains
the power to detect markers with additive variance down
to 0.5% to 1.5%, depending on the marker frequency.

In conclusion, we have compared the efficiencies of tests
for association using DNA pooled according to an affected/
unaffected design and an optimized tail design. The optimal
fraction for tail pooling is 27%; rare alleles, which are more
difficult to detect in general than more frequent alleles con-
tributing the same phenotypic variance, have a slightly lower
optimal fraction. The tail design is approximately 4-fold more
efficient than an affected/unaffected design, suggesting that
quantitative phenotypes are preferable to qualitative classifi-
cations when DNA sample collections are compiled. Exclud-

ing effects of measurement error, the repository size required
for a pooled DNA study is only 1.24-fold larger than that
required for an individual genotyping study with the same
type I and II error rates. When the effects of measurement
error are included, tests of allele frequency differences
between pools may still be valuable as a pre-screen that can
reduce the number of markers for individual genotyping by a
factor of 100.
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